Random Graph-Homomorphisms and Logarithmic Degree
نویسندگان
چکیده
منابع مشابه
Random Graph-Homomorphisms and Logarithmic Degree
A graph homomorphism between two graphs is a map from the vertex set of one graph to the vertex set of the other graph, that maps edges to edges. In this note we study the range of a uniformly chosen homomorphism from a graph G to the infinite line Z. It is shown that if the maximal degree of G is ‘sub-logarithmic’, then the range of such a homomorphism is super-constant. Furthermore, some exam...
متن کاملGraph homomorphisms through random walks
In this paper we introduce some general necessary conditions for the existence of graph homomorphisms, which hold in both directed and undirected cases. Our method is a combination of Diaconis and Saloff– Coste comparison technique for Markov chains and a generalization of Haemers interlacing theorem. As some applications, we obtain a necessary condition for the spanning subgraph problem, which...
متن کاملOn Random Graph Homomorphisms into Z
Given a bipartite connected finite graph G=(V, E) and a vertex v0∈V, we consider a uniform probability measure on the set of graph homomorphisms f: V→Z satisfying f(v0)=0. This measure can be viewed as a Gindexed random walk on Z, generalizing both the usual time-indexed random walk and tree-indexed random walk. Several general inequalities for the G-indexed random walk are derived, including a...
متن کاملGraph Powers and Graph Homomorphisms
In this paper we investigate some basic properties of fractional powers. In this regard, we show that for any rational number 1 ≤ 2r+1 2s+1 < og(G), G 2r+1 2s+1 −→ H if and only if G −→ H− 2s+1 2r+1 . Also, for two rational numbers 2r+1 2s+1 < 2p+1 2q+1 and a non-bipartite graph G, we show that G 2r+1 2s+1 < G 2p+1 2q+1 . In the sequel, we introduce an equivalent definition for circular chromat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Probability
سال: 2007
ISSN: 1083-6489
DOI: 10.1214/ejp.v12-427